
分享:天然氣摻氫輸送管線鋼氫脆敏感性研究進展
0. 引言
氫氣(H2)作為一種能源載體,是化石燃料向可再生能源過渡以減少溫室氣體排放的重要組成部分。管道為氫氣運輸提供了一種經(jīng)濟有效的方法,利用現(xiàn)有天然氣管網(wǎng)可大大降低輸氫成本[1]。然而,在管道表面吸附的氫原子會隨著濃度梯度驅(qū)動而擴散到管材內(nèi)部:氫原子先在晶體點陣間隙處擴散,并進一步通過空位、位錯、晶界和非金屬夾雜物等缺陷(氫陷阱)捕獲,從而導致氫原子的局域化。當氫濃度達到閾值濃度時,會導致裂紋萌生或產(chǎn)生氫鼓泡,即氫脆(hydrogen embrittlement,HE)[2],這會造成管材抗拉強度、斷裂韌性、延性以及疲勞耐久性等性能的劣化[3-4],從而嚴重制約摻氫天然氣管道的安全性。HUANG等[5]發(fā)現(xiàn)在天然氣中加入體積分數(shù)5%的H2后,X70鋼的服役壽命僅為正常壽命的1/10??梢?,氫脆導致的管道失效是亟待解決的問題[6]。
天然氣長輸管道用典型管線鋼為X52鋼、X65鋼、X80鋼等[7],一般強度越大,氫脆敏感性也越大[8]。在體積分數(shù)10%氫氣環(huán)境中,X52鋼仍具有較高的塑性[9],X65鋼的氫脆指數(shù)為11.63%[10],X80鋼的氫脆指數(shù)升至16%[7]。除了管線鋼自身強度和氫氣含量外,應力也對管線鋼的氫脆敏感性產(chǎn)生影響。LIN等[11]發(fā)現(xiàn),X65鋼的氫脆敏感性隨著三向應力的增加而降低,并且位錯捕獲氫機制在氫脆中占主導地位;ZHANG等[12]基于三維力學-氫擴散耦合有限元模型,發(fā)現(xiàn)隨著腐蝕缺陷深度和長度的增加,更多的氫聚集在缺陷中心,從而增強了X52鋼的氫脆敏感性。目前,廣泛接受的氫脆機理主要包括氫壓理論、氫致弱鍵理論、氫增強局部塑性變形理論等,其共同點是應力誘導氫原子在高應力區(qū)富集,當富集的氫濃度達到臨界值時,材料的斷裂應力會降低,進而發(fā)生脆斷。管線鋼的氫脆過程復雜,其鋼級、表面缺陷、組織缺陷以及腐蝕環(huán)境和運行工況等均會影響氫脆敏感性的變化規(guī)律與機制。為了給相關人員提供參考,作者針對天然氣摻氫輸送管線鋼,概述了氫的來源和滲透過程以及氫脆機理,并重點探討了氫脆敏感性的影響因素,以期為確保天然氣摻氫輸送管道和能源運輸安全提供理論依據(jù)與技術支持。
1. 氫的來源及滲透過程
H2無法以分子形式滲透進金屬內(nèi)部,只有在解離成原子的狀態(tài)下才能進入金屬。材料中的氫來源可分為內(nèi)氫和外氫,對于天然氣摻氫輸送管道,內(nèi)氫來源于冶煉(爐中水分解成氫進入液態(tài)金屬)、焊接(局部冶煉導致焊條中的水分解)、酸洗(部分表層金屬+酸反應生成的氫進入金屬)和電鍍(析氫過程)等;外氫來源于管道運行條件下氫氣流中的H2解離吸附及陰極析氫反應(天然氣含有的H2S、CO2和H2O等雜質(zhì)在管道內(nèi)壁坑洼處形成積液,濕潤的H2S和CO2與管道內(nèi)壁發(fā)生電化學腐蝕,氫通過陰極析氫反應產(chǎn)生)[13]。天然氣管道大都處于埋地狀態(tài),而我國土壤pH在3~10之間,在濕潤的土壤環(huán)境中管道外壁會發(fā)生電化學腐蝕,氫由陰極析氫反應產(chǎn)生;此外埋地管道通常會進行陰極保護,當陰極保護電位負于析氫電位時,會在管道和土壤的交界處發(fā)生析氫反應而產(chǎn)生氫[14];土壤中的微生物(如硫酸鹽還原菌,SRB)新陳代謝的副產(chǎn)物(如H2S)“毒化”也會產(chǎn)生氫[15]。
天然氣摻氫輸送管線鋼中氫的來源及吸附、溶解、擴散如圖1所示。首先,管內(nèi)集輸?shù)腍2做無規(guī)則的布朗運動,與管道內(nèi)表面碰撞,并通過范德華力物理吸附在被碰撞管道內(nèi)表面;H2在管道內(nèi)表面發(fā)生解離或者管道因電化學腐蝕而發(fā)生陰極析氫反應,從而形成化學吸附的氫;吸附氫通過溶解進入次表面[16],溶解的氫部分結(jié)合成氫氣離開金屬,部分通過金屬晶格或空位、晶界、位錯等擴散,并在內(nèi)部應力集中或缺陷附近處聚集,當在氫陷阱(如晶界、非金屬夾雜物和位錯)處積累的氫濃度超過閾值濃度時,易引起氫脆[6];在外加應力,甚至無外加應力作用下,管線鋼發(fā)生氫致開裂(hydrogen induced cracking,HIC),從而導致管道失效。
2. 氫脆機理
國內(nèi)外學者對氫脆機理進行了大量研究[17-28],整個氫脆機理發(fā)展歷程如圖2所示。氫損傷主要集中在一種特定的機制上,而單一的氫損傷機制無法準確描述其損傷過程,實際氫損傷過程是多種機制共同作用的結(jié)果?;谀M和試驗,現(xiàn)有氫脆機理在鋼中的協(xié)同作用可大致分為兩類(如表1所示):一類是氫增強局部塑性變形(HELP)機制介導的氫致弱鍵(HEDE)理論模型,該模型側(cè)重于通過氫增強局部塑性變形機制的活動激活氫致弱鍵理論機制,即氫促進位錯運動并引發(fā)高密度位錯堆積,增加碳化物和其他位錯勢壘處的氫濃度,從而引發(fā)氫致弱鍵理論機制的活化;另一類是氫增強局部塑性變形機制+氫致弱鍵理論模型,該模型側(cè)重塑性引發(fā)的氫脆機制[氫增強局部塑性變形機制、吸附誘導位錯發(fā)射(AIDE)機制或氫增強應變誘導空位(HESIV)形成機制]和氫致弱鍵理論機制的協(xié)同作用,該協(xié)同作用導致鋼從以韌性為主的斷裂模式向以脆性為主的斷裂模式轉(zhuǎn)變,主要受裂紋尖端位錯形核/發(fā)射與界面脫黏之間的競爭控制[17]。
有研究[40]認為,材料中的氫脆現(xiàn)象是在氫增強局部塑性變形和氫致弱鍵的協(xié)同作用下發(fā)生的:材料中形成的氫氣氛增加了位錯的滑移率,造成位錯滑移帶的塞積,增強了局部塑性變形;同時晶界處的氫降低了材料的界面內(nèi)聚強度,產(chǎn)生氫致弱鍵效應導致材料發(fā)生斷裂。LYNCH[19]則結(jié)合氫增強局部塑性變形機制和氫致弱鍵理論,提出了吸附誘導位錯發(fā)射機制,認為材料裂紋的形核和擴展是裂紋尖端區(qū)域發(fā)生脫聚以及位錯發(fā)射導致的;位錯發(fā)射是裂紋擴展的主要機制,而氫在裂紋尖端或空位處的吸附和擴散是吸附誘導位錯發(fā)射機制的必要條件。WASIM[41]和DJUKIC等[17]認為,氫增強局部塑性變形效應導致的高密度堆積位錯可能會促進氫向晶界運輸,從而引發(fā)氫致弱鍵效應。TAKETOMI等[29]也認為,氫脆機理可能由氫致塑性變形(氫增強局部塑性變形機制、氫增強應變誘導空位形成機制等)向脆性氫致弱鍵斷裂轉(zhuǎn)變。
各種氫脆機制和缺陷概念對α-Fe中氫脆機理的揭示具有協(xié)同作用,這與氫增強局部塑性變形機制+氫致弱鍵理論模型一致[42]。氫增強局部塑性變形和氫致弱鍵引發(fā)的氫致斷裂取決于晶格氫濃度,在較低的晶格和晶界氫濃度下,氫增強局部塑性變形可能占主導地位[43]。WAN等[36]提出了一種基于位錯-晶界反應的混合氫脆模型,該模型認為氫脆是通過位錯撞擊/發(fā)射在晶界上產(chǎn)生的,在低氫濃度下,這一結(jié)論符合氫增強局部塑性變形機制介導的氫致弱鍵理論,而在高氫濃度下,附近的位錯活動較少,氫脆主要由氫致弱鍵控制。氫濃度梯度是氫擴散的重要驅(qū)動力,若高拉應力區(qū)的氫濃度相對較低,而其他區(qū)域氫濃度較高,則氫會遷移到高拉應力區(qū)[20],造成氫的偏聚,使該區(qū)域的氫濃度達到材料開裂的臨界氫濃度。ILIN等[44]發(fā)現(xiàn),氫濃度的增加與應變速率相關,應變速率越低,材料中的氫濃度越高。氫脆機制除受氫濃度的影響外,還受充氫方法(電化學與氣態(tài)、原位與非原位)、機械測試方法(慢應變速率與高應變速率測試)和計算建模參數(shù)等影響。圖3總結(jié)了氫增強局部塑性變形機制和氫致弱鍵理論協(xié)同作用機制,可知在較低的氫濃度和應力狀態(tài)下,塑性介導的氫脆機制占主導地位,而在較高的氫濃度和應力條件下,氫致弱鍵理論占主導地位。
3. 氫脆的影響因素
3.1 缺陷
3.1.1 焊縫
一般管線鋼焊接接頭處的氫脆敏感性按母材、熱影響區(qū)細晶區(qū)、熱影響區(qū)粗晶區(qū)、熔合區(qū)和焊縫依次增大[46-47]。在焊接過程中,焊縫金屬經(jīng)歷奧氏體轉(zhuǎn)變后生成針狀鐵素體組織,針狀鐵素體具有良好的韌性,可抑制裂紋擴展,氫脆敏感性最低[48],且焊縫金屬的抗氫脆性能隨針狀鐵素體含量的增加而提高。然而,冷卻速率不均勻會導致焊縫中形成馬氏體組織,馬氏體組織含有較多的晶界和位錯缺陷,引發(fā)氫脆的概率遠高于其他組織,其與鐵素體界面易出現(xiàn)氫致裂紋,導致焊縫具有較高的氫脆敏感性;同時,多邊形鐵素體/針狀鐵素體相界面可能會作為氫陷阱,加速氫的富集,使得焊縫易發(fā)生氫致開裂[49]。焊縫中也可能存在少量奧氏體,有利于降低氫脆敏感性,這主要是由于奧氏體獨特的面心立方結(jié)構(gòu)導致氫溶解度高,且氫在奧氏體中的擴散速率低于馬氏體中[50],大部分氫致裂紋都會在奧氏體區(qū)域停止擴展[51];在高濃度H2和應力集中的情況下,奧氏體可能會轉(zhuǎn)變成馬氏體,從而增加氫脆敏感性[52]。PENG等[53]發(fā)現(xiàn),對X80鋼焊縫進行退火處理后,其組織為均勻的鐵素體+珠光體,均勻的組織有利于減少氫的局部富集,降低氫脆敏感性。
3.1.2 腐蝕缺陷
天然氣管道多處于埋地狀態(tài),濕潤的土壤環(huán)境及土壤中的微生物新陳代謝的副產(chǎn)物(如H2S)會使管道外壁發(fā)生電化學腐蝕;天然氣中含有的H2S、CO2和H2O等雜質(zhì)在管道內(nèi)壁的坑洼處形成積液,濕潤的H2S和CO2會使管道內(nèi)壁發(fā)生電化學腐蝕。因此,長期服役后天然氣管道內(nèi)外表面均會出現(xiàn)腐蝕缺陷。腐蝕會降低管道壁厚,導致局部應力集中,降低管道的承壓能力。在相同內(nèi)部壓力下,外表面腐蝕缺陷處的最大氫濃度大于內(nèi)表面腐蝕缺陷處,應力集中區(qū)和氫積聚區(qū)均隨缺陷長度的增加而擴大[54]。此外,天然氣管道通常會經(jīng)歷壓力波動,在壓力波動下缺陷中心的應力及應力變化幅度最大[12],并且隨缺陷長度的減小、深度的增加,氫更易在缺陷中心聚集[55-56]。曹宇等[57]研究發(fā)現(xiàn),正方形缺陷較圓形缺陷更易產(chǎn)生應力集中,管道更易失效??梢?,內(nèi)部壓力、缺陷形狀、缺陷位置、缺陷長度和深度等因素均會對管道缺陷處氫分布及應力集中狀態(tài)產(chǎn)生顯著影響,從而影響管道的氫脆敏感性。
3.1.3 組織缺陷
管線鋼組織中不可避免地存在著空位、位錯、晶界以及夾雜物等缺陷,這些缺陷作為氫陷阱可以捕獲氫,使氫發(fā)生聚集,對氫的擴散產(chǎn)生影響,從而影響氫脆敏感性。
空位可俘獲氫并抑制氫的擴散,從而顯著增加空位的平衡濃度[58]。然而,對于單個空位可以容納幾個氫仍存在爭議。NAZAROV等[59]研究發(fā)現(xiàn),面心立方結(jié)構(gòu)鐵基體中的單個空位是一個高效且寬敞的陷阱,可以容納多達6個氫。成應晉等[60]則認為,在真空條件下單個空位可以容納3個氫。HAYWARD等[61]研究發(fā)現(xiàn),氫易與空位結(jié)合形成氫-空位團簇,而與鄰近的鐵原子則結(jié)合較少,空位濃度的增加可能導致氫脆。湯偉杰等[62]發(fā)現(xiàn),γ-Fe(Fe8H、Fe7H)中的空位不僅是捕獲氫的陷阱,還會降低氫的擴散激活能,促進氫的擴散。作者所在課題組發(fā)現(xiàn),在無缺陷α-Fe中兩個氫原子間不會自發(fā)形成H2,而被單個空位捕獲的氫達到14個時,空位中心形成H2,H2的形成增加了空位處的應力,進一步敏化鋼的氫脆行為。
位錯可作為氫的可逆陷阱:當氫進入金屬內(nèi)部后,會與位錯發(fā)生交互作用,影響材料的氫脆敏感性。JEMBLIE等[63]研究發(fā)現(xiàn),熱軋復合鋼管中位錯處的氫會降低其韌性,證實了位錯處的氫富集會使材料氫脆敏感性增加的結(jié)論。在塑性變形中,鋼中的螺位錯對其韌性起主導作用;氫通過促進螺位錯運動,促使塑性局域化,降低材料的氫脆敏感性;但是若塑性局域化過度,會導致局部變形集中,形成微裂紋等缺陷,這些缺陷又會成為氫的富集場所,同時導致應力集中,從而增加材料的氫脆敏感性[28]。
晶界處的原子排列無序,結(jié)構(gòu)不穩(wěn)定,氫只需較低的能量就可以穿過晶界,擴散難度較低,因此氫在鋼中沿晶界的擴散現(xiàn)象顯著[64]。金屬材料的氫脆斷裂類型按斷口特征分為沿晶斷裂和穿晶斷裂。沿晶斷裂的機理可由氫致弱鍵理論解釋,即當氫在晶界處聚集到一定濃度時,會削弱晶界的結(jié)合強度,從而促使裂紋的產(chǎn)生。對于穿晶斷裂的產(chǎn)生機理,最新研究[65]認為,局部塑性變形引發(fā)小角度晶界的動態(tài)形成,同時吸引氫在小角度晶界處偏析,從而促進裂紋擴展。晶界對氫脆的影響是局域性的:一方面,晶界的高能區(qū)域會吸引氫沿晶界聚集,導致材料失效[27],其中大角度晶界促進裂紋萌生,而小角度晶界促進裂紋擴展[66];另一方面,氫會被大量晶界陷阱捕獲,導致每個晶界區(qū)域的氫濃度降低[67]。晶界作為氫陷阱,適當改變其數(shù)量可以使氫分布均勻化,使局部氫濃度降低,從而降低氫脆敏感性。
氫在含碳、氮的夾雜物處易發(fā)生偏析,使得氫的滲透速率降低。同時,氫與含硫夾雜物(如MnS等)和含氧夾雜物(如Al-O、Si-O等)的結(jié)合能極高,極易在這些夾雜物區(qū)域聚集,導致氫致裂紋的萌生和擴展[68]。PENG等[69]研究發(fā)現(xiàn),在基體中均勻分布的氫會逐漸被MnS等夾雜物以及碳、氮化合物析出相捕獲,在這些夾雜物與析出相周圍發(fā)生富集;當局部區(qū)域的氫濃度達到臨界值后,裂紋形核并沿著偏析區(qū)擴展,最終導致材料斷裂。ZHAO等[70]也發(fā)現(xiàn),氫導致的疲勞裂紋傾向于在MnO等夾雜物周圍擴展。由于夾雜物的取向和尺寸特征復雜,其對氫擴散行為的影響也較復雜。周池樓等[71]指出:氫的擴散通量和擴散系數(shù)隨夾雜物與氫擴散方向夾角的增大而減小;不同于位錯可為氫提供通道,夾雜物對氫的通道效應減弱,捕獲效應增強;減小夾雜物尺寸并使其在鋼中彌散分布可降低氫的大規(guī)模富集,從而顯著減小夾雜物對氫擴散的影響范圍,夾雜物取向和尺寸對氫擴散模型的影響如圖4所示。夾雜物尺寸和形狀也是影響裂紋擴展的重要因素,大尺寸夾雜物,細長的硫化錳(MnS)和團簇狀的氧化物會導致鋼的氫脆敏感性增加[69]。條紋狀復合夾雜物會產(chǎn)生高殘余應力,使得鋼易發(fā)生開裂[72]??刂品墙饘賷A雜物的尺寸,并復合成球狀,有利于提高鋼的抗氫致開裂性能[73],這是因為細小而分散的球形夾雜物不易產(chǎn)生應力集中。
3.2 服役環(huán)境
3.2.1 氫濃度
摻氫管道中氫氣與天然氣的密度差易造成氫濃度分布不均勻[74],局部氫濃度較高會導致鋼管氫脆敏感性的增加和力學性能的下降[67]。若氫氣混合的天然氣輸送系統(tǒng)控制在較低壓力(小于5 MPa)和較高流速(大于10 m·s−1)下,氣體混合均勻性提高,氫原子滲透金屬的概率降低,氫脆風險相對減小[74]。隨著氫濃度的增大,X52鋼的塑性顯著下降,氫脆指數(shù)顯著增大[75],X70鋼和X80鋼的塑性和斷裂韌性顯著降低,疲勞裂紋擴展速率顯著增加[76-77],X100鋼的屈服強度和抗拉強度降低[78]。在X70鋼的氫脆指數(shù)隨氫濃度的變化關系中存在臨界氫濃度閾值,當氫濃度低于臨界閾值時,氫脆指數(shù)隨氫濃度的增加先迅速增大后緩慢增大,當氫濃度超過臨界閾值后,X70鋼表面出現(xiàn)氫鼓泡現(xiàn)象,而內(nèi)部出現(xiàn)氫致裂紋[79-80]。
3.2.2 溫度
在較低溫度下氫擴散困難,在材料變形過程中無法偏聚,因此不會導致材料的塑性降低;隨著溫度升高,參與反應的分子會獲得更多的能量,氫在材料中的擴散速率增加,因此材料的氫脆敏感性增加[81-82]。LIU等[83]研究發(fā)現(xiàn),隨著溫度的升高,304不銹鋼和X65鋼發(fā)生氫脆的可能性增大。然而,盧西博[82]指出,當金屬中氫含量上升時,占據(jù)低活化能位置的氫會吸引其他氫并在周圍形成氣團,氣團產(chǎn)生阻礙作用,使得其他氫向金屬內(nèi)部擴散時,躍遷所需的活化能增加,導致氫的擴散系數(shù)降低。溫度主要影響氫的擴散和聚集行為,氫的擴散速率通常隨著溫度的升高而增加,而在足夠低的溫度下擴散速率很低,故推測存在溫度臨界閾值。BROWN等[84]證實,在接近室溫條件下鋼的氫致塑性損失最顯著。低碳馬氏體鋼在環(huán)境溫度為25 ℃時的氫脆敏感性最大[85],X90鋼的溫度臨界閾值為40 ℃[86]。
3.2.3 應力狀態(tài)
管線鋼所處的應力狀態(tài)(應變速率和應力存在形式)會影響氫在金屬內(nèi)部的擴散,從而影響氫脆敏感性。ILIN等[44]研究發(fā)現(xiàn),應變速率越低,材料中的氫濃度越高。BROWN等[84]證實,隨著應變速率的降低,材料的塑性損失增加。當應變速率較低時,材料內(nèi)部氫的擴散速率大于位錯運動速率,以致氫在位錯密集處聚集;當應變速率較高時,位錯運動速率大于氫的擴散速率,氫無法在位錯密集處聚集,氫濃度不會達到裂紋擴展的臨界氫濃度,裂紋呈現(xiàn)非穩(wěn)態(tài)擴展特性。但是,降低應變速率并不一定會增加材料的氫脆敏感性。OKAYASU等[87]研究發(fā)現(xiàn),應變速率最低的高強鋼試樣并未表現(xiàn)出最高的氫脆敏感性。常用管線鋼在不同應變速率下的氫脆指數(shù)(基于充氫前后的斷后伸長率、斷裂韌度等指標計算得到)如表2所示,氫脆指數(shù)越大,氫脆敏感性越大,抗氫脆能力越弱。由表2可見,在高壓氫氣環(huán)境下應變速率對X80鋼的氫脆敏感性影響不大。綜上,在研究過程中需要通過試驗明確各種因素(如充氫方式、氫環(huán)境、管材強度、氫分壓等)與應變速率的耦合作用對管材氫脆敏感性的影響。
管線鋼牌號 | 應變速率/s−1 | 試驗環(huán)境 | 電流密度/(mA·cm−2) | 氫脆指數(shù)/% | 文獻 |
---|---|---|---|---|---|
X42 | 5.4×10−5 | 0.5 mol·L−1 H2SO4 | 0.5,1,2.5 | 34,42,59 | [88] |
X52 | 5.37×10−5 | 0.5 mol·L−1 H2SO4 | 10,20 | 72,75 | [75] |
X70 | 3.75×10−5 | 純H2(10 MPa) | 22~25 | [89] | |
2.62×10−5 | H2和CH4混合物(氣壓比1∶99);純H2(10 MPa) | 3,33 | [90] | ||
X80 | 5×10−5 | 純H2(0.1,5,10,30 MPa) | 0,41,67,68 | [91] | |
1×10−6 | 0.5 mol·L−1 H2SO4 | 1 | 63 | [92] | |
X100 | 2×10−4 | 0.5 mol·L−1 H2SO4 | 25 | 46.3 | [78] |
在天然氣摻氫輸送工況下,管材不可避免地受到外應力的作用。研究[75]發(fā)現(xiàn):對預充氫試樣施加外應力后,試樣中的部分氫會逸出,導致氫濃度降低,氫脆不明顯,因此靜態(tài)充氫后,材料的主要斷裂機制為韌性斷裂,具有少量脆性斷裂特征;動態(tài)充氫后,在工作環(huán)境中的氫與應力加載中的氫富集作用下,材料表現(xiàn)出明顯的脆性斷裂特征。在交變應力作用下,隨交變頻率增加,即循環(huán)應力變化加快,氫滲透電流密度降低,此時更多的氫在鋼內(nèi)部聚集,疲勞裂紋生長速率顯著增加,從而明顯縮短鋼管的剩余壽命[93]。通過循環(huán)加載/卸載過程,氫可脫離位錯(氫陷阱),使位錯恢復無氫狀態(tài),從而降低材料的氫脆敏感性[28]。
管線鋼的焊縫中存在的焊接殘余應力會影響氫在焊縫中的富集,裂紋易在應力最大位置處萌生和擴展;焊接殘余應力對氫擴散行為的影響大于組織不均勻性[47],同時會誘導氫從母材和熱影響區(qū)擴散至焊縫[94],導致殘余應力集中區(qū)域具有較高的擴散氫濃度。X80鋼管道6層環(huán)焊縫中的氫濃度峰值是無焊接殘余應力時的2.6倍[95]。通過多重焊接工序優(yōu)化、選擇合適的層間溫度和焊縫填料緩解焊縫的殘余應力[47],可以提高管道的抗氫脆性能。
應力主要通過改變管材內(nèi)部的微觀狀態(tài)來改變氫的擴散和滲透行為。邢云穎[96]研究發(fā)現(xiàn),在電流密度10~125 mA·cm−2的強陰極干擾條件下,進入X80鋼內(nèi)部的氫含量遠低于誘發(fā)X80鋼氫致裂紋形核的平均氫含量,而施加應力后材料的氫脆敏感性增加;在彈性階段,除了氫陷阱密度,其他氫滲透參數(shù),如氫擴散系數(shù)和表面氫濃度等都有所提高;在塑性階段早期,隨著位錯數(shù)量的增加,氫陷阱密度顯著增大,導致氫濃度顯著提高,氫發(fā)生聚集而使其滲透速率降低;當塑性階段后期氫陷阱密度達到飽和時,大量的位錯運動將形成新的氫擴散通道,從而使氫滲透速率再次增加并趨于穩(wěn)定。
3.3 合金元素
硫、磷、鋁、錳、硅等元素在煉鋼或軋鋼時易形成偏析或夾雜物,均會提高氫脆敏感性,而合金元素與碳形成納米尺寸的碳化物可提供高結(jié)合能的不可逆陷阱(氫難以逃逸的陷阱),也可通過細化晶粒尺寸來增加可逆陷阱(氫可逸出的陷阱)的數(shù)量,使氫在鋼中的分布更加均勻,抑制氫在缺陷部位的聚集,從而提高抗氫脆能力。表3列出了鋼中不同合金元素對其力學性能和氫脆敏感性的影響。
史顯波等[106]研究發(fā)現(xiàn),納米級富銅相(銅質(zhì)量分數(shù)1.06%,1.46%,2.00%)可促進氫陷阱的形成,使氫均勻分布,避免發(fā)生局部氫脆。YOO等[107]也認為,添加銅元素(質(zhì)量分數(shù)1%和3%)可降低氫擴散速率,有效提高材料的抗氫脆性能。
添加釩元素可形成有效的氫陷阱,從而減少可擴散氫數(shù)量,降低氫脆風險。釩元素的加入可以增強沉淀強化效果,隨著釩元素含量的增加,鋼中碳化釩納米顆粒的析出量增多,有效氫陷阱數(shù)量增加,氫擴散系數(shù)明顯降低,含質(zhì)量分數(shù)0.13%釩的鋼具有最好的抗氫致脆化性能[108]。YANG等[109]和DONG等[110]同樣發(fā)現(xiàn),添加釩元素可以提高鋼的抗氫脆性能。
鉬元素作為強碳化物形成元素,可有效降低材料的氫脆敏感性。在鉻鉬鋼中,鉬元素可以降低硫、磷等雜質(zhì)元素在晶界的聚集程度,提高鋼的抗氫脆性能。FU等[111]研究發(fā)現(xiàn),鉻鉬鋼中鉬元素摻雜使得氫在鐵晶體中的固溶更容易,原因在于鉬元素會提高氫擴散激活能,顯著降低氫擴散系數(shù)[112]。作者所在課題組也發(fā)現(xiàn),鉬元素的添加使得氫在α-Fe晶胞中的擴散勢壘由未添加鉬的0.195 eV增加到0.438 eV,說明鉬元素的固溶對氫在α-Fe中的擴散具有一定的阻礙作用;同時,鉬元素主要以溶質(zhì)原子的形式存在并在晶界處偏聚,基體中大量鉬原子的存在可以延緩氫向夾雜物的擴散,從而延緩裂紋的萌生[113]。對于42CrMo鋼和AISI4130鉻鉬鋼,鉬元素的理想質(zhì)量分數(shù)分別為1.15%和0.75%~0.90%,而壓力容器常用鉻鉬鋼(如30CrMo鋼、4130X鋼、34CrMo4鋼等)[114]中的鉬元素質(zhì)量分數(shù)應在0.25%~0.30%。
鈮元素在鋼中不僅可細化晶粒、提高強度,同時與碳形成的納米尺寸碳化物可作為氫陷阱阻礙氫在鋼中的擴散。ZHANG等[115]研究發(fā)現(xiàn),添加鈮元素后形成的納米尺寸鈮碳化物可延緩氫鼓泡的生成。添加鈮元素還可以降低Σ3/大角度晶界的比例,從而增加裂紋擴展阻力,同時NbC的沉淀析出阻礙了氫-位錯相互作用,降低了局部塑性變形[113,116]。但是,鋼中尺寸超過5 μm的碳化物夾雜,會成為氫富集的中心和氫致裂紋萌生的起點,不利于提高鋼的抗氫致開裂性能[117]。因此,在熱處理過程中應注意控制合金碳化物的尺寸。
4. 結(jié)束語
在天然氣摻氫輸送過程中,高壓氫氣環(huán)境會使管道表面吸附的氫原子滲入鋼內(nèi)部致其發(fā)生氫脆,其中氫主要由運行時H2的解離吸附、電化學腐蝕陰極析氫反應以及未運行時焊接過程所引入。氫脆發(fā)生與否主要取決于裂紋尖端的局部應力狀態(tài)和氫濃度,不同條件下的主導機制不同。在較低的氫濃度和應力下,塑性介導的氫脆機制占主導地位;而在較高的氫濃度和應力下,氫致弱鍵理論占主導地位。通過多重焊接工序優(yōu)化、選擇合適的層間溫度和焊縫填料緩解焊縫的殘余應力、使組織中形成分散的球形夾雜物、采用合適的熱處理工藝制備針狀鐵素體為主的鋼材、合理添加強碳化物形成元素(銅、釩、鉬、鈮等)等均有利于提高管線鋼的抗氫脆性能。
目前,天然氣摻氫輸送管道用管線鋼氫脆的研究仍面臨諸多難題:(1)管材氫脆受多種因素影響,復雜因素交互作用以及這些因素如何耦合影響管材的氫脆敏感性相關研究不足,因此今后需要綜合考慮影響氫脆敏感性的因素(如氫濃度、溫度、管道缺陷等),開展多因素耦合作用下的氫脆研究,明確各因素之間的交互作用機制,建立更全面的氫脆敏感性預測模型;(2)在實際工況中,管材受力復雜,且在摻氫輸送過程中因天然氣與氫氣物性的不同而引起動態(tài)局部應力,這些應力變化如何協(xié)同影響鋼的氫脆敏感性及其影響程度亟待明確,因此需構(gòu)建多軸應力與動態(tài)局部應力聯(lián)合加載的試驗平臺,模擬不同輸送壓力等條件下管材的應力狀態(tài),研究應力變化頻率、幅度對氫脆敏感性的影響,建立應力-氫耦合作用下氫脆敏感性的理論模型,量化各應力因素對材料氫脆敏感性的影響程度。
文章來源——材料與測試網(wǎng)